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CLOSURE OF EQUATIONS OF TURBULENT FLOWS WITH TRANSVERSE SHEAR 

Ao P. Netyukhailo UDC 532.526.3 

Dependences are suggested for calculating rates of diffusion transport of kinetic 
turbulent energy and of scalar turbulence scale. 

The description of turbulent effects by solving the exact Navier--Stokes equations en- 
counters great difficulties at the present stage of development of fast computers. To solve 
practical engineering problems it is sufficient to calculate the average parameters of tur- 
bulent motion of a liquid and of heat and mass exchange. However, the equations of the aver- 
aged turbulent motion are not closed. 

In calculating turbulent flows with account of its "prehistory," we use the system of 
equations: 

au, au, l a p  a f au, 
a----~ + uj --Ox~ - X~. O --ax~ + ~ ~ ~axi - -  < u~uj > , , ( 1 )  ) 

OE OE 0 
- - +  Uh 

a~ ax~ axh 

OU----L ---- O, (2) 

< + / L  - < UiUk \ p  au, . / {  a~, au~ ] a.,_\ (3) 0%-7- / 

in which the unknowns are the normal and tangential Reynolds stresses <uiuj> , the rate of 

diffusion transport of kinetic energy turbulence D~ -- 
Ox~ < u~E' > + \ P u~ , 

/(  ouh ) ax ~ \ ~  ( oxhau' }15\  = rate of i ts dissipation Dg~-w\~--~xh -F-~Tx/ / _ < v  k ~. 

Analysis of the available closure models of Eq. (3) showed that approximating D E by the 
form 

O ( wT OE) (4) 
D ~ -  Oxk (~ ax~ 

does not provide satisfactory agreement with experimental data [i, 2] (Fig. i). This is ex- 
plained by the fact that the available models do not take into account transport processes 
under the action of pressure pulsations [3]. Approximating the quantity s by the Rotta equa- 
tions [4] for Re E ~ 1 
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0 
over the mixing bed thickness [i] : i) DEu= Oxk - - -  < E'.h > ; 

- __~0 <-~'-uh> ; 3) DEu + DEp (I-3, experi- 2) DEp - axh 

o 
mental data of [i]); 4)-~x 8 ---vT o 

e V E  (5) 
e=C~ I 

is found in agreement with numerous experimental data [1-4]. 

To approximate the correlation moment <UkEt>, we use the dynamic transport equation of 
triple central singular-point correlation moments of velocity pulsations [5, 6]: 

D ( u~u~ur > + D'~ < uiuiu~ >-+ < u~u~ur > OUk + OUi 
Ox~ 

-t-<u~UiUr> OUj < UiUj> O<uhu r> (uiuu> O<u,u r)  (6) 
Ox, Ox, Ox~ 

(< o, ,+<u... o, >)_-o. - < u~u~ > o < uj..____2__~ + o + ! u~u~ o p _ \  + (uju~ ox, oxj 
Ox~ ~ < u~ujuku~ > P Oxh / / '" 

Using the Poisson solution [6]: 

we represent 

p S ~ S (  Ou~ OUm OU; Ou~,) OV 
p (x) -- 4 z~ O m - -  

x' Ox; + ox;~ Ox; " x . x' 
v 

(7) 

+(u•uj Oxk / Ox~ 'ox~ 
v 

+ o ~  \ Ox; ~ -  x'. [ \  Ox;~ 
v 

Ou~ 0 ( u~uj > >]  dV ou; / . , 

+ Ox~ \ Ox~ Oxh x--x'  

o,r 

Ou% O(u~uj) \ +  
Ox~ Oxh / 

(8) 
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Similar terms of Eq. 
form 

(6) can be transformed by the same method. We approximate (8) in the 

/~UiUj @ \ ~  0 { At,,ui OUt ) 1 [ " m t  + , lBTti _ _ _ _ _  clmfl OUt Dmq 
Ox h / - -  Oxk Oxm l mm Oxm tk �9 (9) 

The tensors of expression 
moments of velocity pulsations, unit syrmnetric and antisymmetric tensors. 
for them final expressions with account of properties of unit tensors [7] : 

AI,,,U ,.,, Ai < uiuiu~ > + A2E ( uiuj > m l  - -  , 

B m~i ~-- S i V f f  < u~uj > 5tin § B2E V--ESi] 5tin l 

C ~"j ~ V-E < u~uju~ >, r n l h  , ~ a  

D~ I '~ D ( umu~ui > 5lk. 

(9) consist of a set of combinations (permutations) of correlation 
Below we provide 

(IO) 

(Ii) 

(12) 

(13) 

Keeping in mind that terms of Eq. (6) of type < uiUjUr > au___k.h do not provide an important 
OXr 

contribution to balance (6), and using the hypothesis of Millionshchikov [8] 

u ' < utuju~ u; > = < u~uj > < u~ u; > + < tu~ > < u~< > + < uiu; > < uju~ > 

for the quasinormal probability distribution law, as well as relations (8), (9)-(13), we 
solve Eq. (6) for the correlation moment <uiujuk>: 

< uiu~u~ > = --c~ l oxrO ~O ~O" ) < .~..  > - = - -  < . , . j  > + <.,.~> <.,.~> + <.,.~> < ~,.~ > 

- F - F  ~ %7 ~ " 
(14) 

The right-hand side of relationship (14) coincides with the approximation of Hanjalic and 
Launder [6], and the second appears as a component in the Cormack multiparameter model [9]. 
Analysis of experimental data for flow in channels, boundary jets, free and boundary layers, 
as performed by Cormack, shows that for a suitable choice of constant coefficients the mod- 
els of Hanjalic, Launder, and Cormack provide a satisfactory approximation to the measured 
values of <uiujuk> for any set of combinations of subscript values (i, j, k = I, 2, 3). 

Multiplying the instantaneous pressure value ~ by Uk, using the Poisson solution, and 
averaging the result, we obtain 

Ok = PU~+ < puk > - 
4 n Ox; Ox'~ 

v 

- - §  

OUr c)tt/n Oxr ] dV /o,; o < ,  +<.~ o< o < ,  + <u~ \ 
+ u~ ,, a< a~; / a< a~; / ax~ a~; ax, / x - x '  

We approximate the pulsation part of expression (15) in the form 

/ P  
\ p  

~lmh OUl N~kr 
uk~ "~ U~671 + - . .  + Oxm 

(15) 

(16) 

We provide the final expressions for the tensors appearing in (16): 

Gz~ = GIE -6 G2 < u,~uz > < UmUz~) ; 
E 

(17) 

F~ h = F < E'tt h > ; (18) 
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Nmkr ,~ = N - - ~  < u~umu~ ) .  (19) 

Substituting (17)-(19) into (16), we obtain 

\ p - Oxra V E  < U~U~U~ ) . (20) 

The scalar turbulence scale appears in expressions (5), (14), and (20). To determine 
it we use the dynamic equation of dissipation rate transport of turbulent kinetic energy [5]: 

a----!-~ + u a  oe _ a ( < e' uh ) ) - 2 v o_~ / ,  ap Ou~ \ _ 

o.~ axk ax~ p ax~ \ Oxt Ox~ / 

- - 2 v  OU~ / Oui Ouh aul auz \ - - 2 v  / aui Oui auh \ 2 ~ ) .  (21) 
Ox h \ 8x~ Oxz 4- Ox~ Oxh / \ Oxh Oxl Oxt / -- OxkOxt 

We assume that the rate of diffusion transport of the quantity e under the action of velocity 
pulsations depends on the average velocity shear and on the turbulence scale, i.e., s is 
transported by large-scale vortices with velocity 

Wk = G~ OUt - t ,  ( 2 2 )  
Oxh 

and the diffusion flow E is proportional to Wks. 

The term of Eq. (21), taking into account the rate of diffusion transport c under the 
action of pressure and velocity pulsations c redistributed between components of velocity 

pulsations 2~ d/dp dut\ , will be approximated on the basis of the transformed Navier-- 
P dxt \ dx jdxl /  

Stokes equations for ReE>> i. Multiplying this term by 3Ui/3xl, differentiating the result 
obtained with respect to xi, and then averaging, we obtain 

- -2  

. _ _  

v a / ap Out \ , ,~  out , auh au~ \ 
p ax~ \ Oxl axz / -  oxh <2~ ax~ Oxt / +  

Ox~Oxa ~2 vu~ u k Oxz / axt Oxh dxt / 

out <2 vu~ ~ + out au~ out \ + _ _  

oxt <2 ox. / ox,o . > + 
+ <2 v Out Ouh Ouz Oui O~ut \ 

Ox, Oxt Ox~ "> + ~2 ~uk - -  . (2 3) Oxt OxiOxk / 

In analyzing Eq. (23) we start from the condition that the turbulent structure of small 
scales is isotropic, since for the overwhelming majority of real nonisotropic turbulent flows 
the microstructure is isotropic (local isotropy). In this case the following condition can 
be adopted [7]: 

\ t ) = ot,ot  < > . . .  

o r  

/ .  Oui Ouk . \  = < utu~ > .~ - -  < u~ - -  ~ 6u~)krn (24) 
\ Oxz Oxra / O~-~m ,=0 2 Or z " 

Here ~z = (xl)~--(X~)a , and f(r) is the mutual correlation coefficient between velocity 
pulsations at points A and B, being an even function of r. Its Taylor series expansion is 
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a qz 40 ~8 o,8 ~72 

Fig. 2. Turbulence scale distribution 
over the channel width [i0]: i) by Eq. 
(42) [i0]; 2) by relation (41). 

[ ~ ,, [a,: l f (r)= l +.--2-(- L Or= J,=o + -4'-]- L ar~ ],=o + " ' "  
(25) 

By comparing the dependences 

2v /.Oui Oul \ = e  (26) 

\ Oxl Oxz / 
and 

/,Oui auk \ , . ~ _ _ 2 ( u 2  r 02f 1 
\ Ox t Ox~ / - -  i > (27) L ar~ J,-=o 

it follows by account of (24) that 

/ .  aa~ Out~ \ ,,., e6t~. (28) 
2 v k ax~ ax~ / 

Dependence (28) makes it possible to estimate the terms of Eq. (23): 

OU, <2v Ou~ Ou~ \ . . ,  OU~ e6lh= dUl 
Oxh Ox, Oxz / Oxh Oxt 

- -  e, (29) 

O (  / Ouz Ou~ \ ) O 
ox~ v~ \2~ Ox~ ox, / ox----~- (u~o, (30) 

OU~ <2v Ouh Ouz \ , . , ,  OU! e. (31) 
Oxz Ox~ Oxn / Oxl 

From the subscripts of the tensor 02Uz " au~ \ we infer its values by the con- 
Ox~Oxh <.2 vuh Oxl / 

ditions c)U{: >> OU~ , 0U3 , OU 3 . 
Oxa O.v, Oxa &l 

OxiOx~ axz / "--~-3 2v 0u3 dxt ] / "  (32) 
Ox~ 

By dimensionality analysis of (32), we assume that there exist sizes of pulsations of linear 
vortex sizes, such that the following condition is satisfied 

l r ~ ,  ~ U3 
-- - -  (33) au~lOx, 

7{ Ous Y \~e .  For isotropic turbulence we take v \~ Oxl ] / Then, assuming that the correlation 
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Fig. 3. D E distribution over the mixing 
bed thickness [i]: i) experimental data 
[i]; 2) by relations (40), (5). 

coefficient between 

account of (5) 

/ i '  O.~ 12\ 
\ [  ox, 1 /  

and l' is a constant quantity, we rewrite (32) with 

OzUt E3/2 OzU, Ou, \ ~ C~tC2 -~3  " (34) 
OxlOxh <2 vuk Oxl / -- 

Similar transformations are carried out 
known Kolmogorov hypothesis: 

au~ 02U, / 
k2  vu~ - -  Oxz -- Ox~Oxh 

over other terms of Eq. (23), using the well- 

% = C~ VEI, 

/ c)x3 Ox3 ~,-~x~] E. (35) 

Based on this analysis of Eqs. (24)-(28), we reach the conclusion that 

2v OU, / OUi Ou~ -k -Ou,  Ou, \ , . . ,  OUi,_ 6i~e-~O, (36) 
Ox k \ Ox~ Oxz Ox~ Ox~ / Ox~ 

since the relation 0Ui =0 is valid for an incompressible liquid. 
axl 

For approximating the remaining terms of Eq. (21), we use the analysis of [6] 

2 ~ / Oui 

\ Oxk 

In analogy with (37), we write 

<( 02ui )2 82 OU, Ou~, \ + 2  'v > "" C,, (37) 
Ox, Ox, / Ox.Ox~ -k '"  

8 z 

Ox~ Ox~ Oxk / . Oxl OxiOxk / -- E 

Here F e can be a constant quantity or i function of the turbulence parameters. This prob- 
lem will be investigated in what follows. 

Based on the analysis of balance contributions of separate terms of Eq. (3) [i, 2], one 
can draw the conclusion that diffusion transport of turbulent energy under the action of 
pressure pulsations compensates to a large degree convective transport. We assume that the 
same compensation also occurs in transport of the quantity e. With account of this assump- 
tion and approximations (29)-(32), (34)-(38) we solve Eq. (21) for the turbulence scale: 

I = E]/(F,--C,~) C2 c"c'k-~x~/ ~ ox2 ox~ +~ ~ E3n o~3 
(39) 

The following dependence was obtained for boundary and free layers as a result of nu- 
merical optimization of coefficients 
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Fig. 4. Distributions of DEu and D E 
over the mixing bed thickness [I]: [) 
DEu from experimental data [i]: 2) DEu 
by relation (43); 3) DEp from experiment- 
al data [I]; 4) DEu + DEp from experiment- 
al data [I]; 5) by DEu + DEp (43) and (44). 

r I , 
0E3/2 OU~ ]z/~. 

Ox~ Ox3 
(40) 

The following formula is assumed in calculating turbulent characteristics in the channels 

" E 0,075 o.6E \ Ox~ ] + Ea/2 0x~ + l = 1,75 E Emax OX a OX8 " (41) 

Equations (40), (41) provide close results for flows in channels in the range xJ(D/2) = 0-0.5 
[I0]. Figure 2 shows the distribution of the turbulence scale, calculated by Eq. (41) and 

l = j=" Rli (xi ,  x2, x3 @ r) dr. (42) 
0 

The adequacy of Eq~ (40) for free boundary layers is indicated by comparing the profiles 
e = ~(n) calculated by using Eq. (5) with the measured ones (Fig. 3). Significant devia- 
tions occur only in the outer boundary region, where significant errors are possible in de- 
termining derivatives with respect to velocity and energy. The calculated values of turbu- 
lence scales for flow in channels, boundary and free layers are in satisfactory agreement 

with measurements [ii]. Using relations (14) and (20) and assuming that -~d<u~>~ de 
' dx3 ~ dx3 ' 

we w r i t e  i n  a p p r o x i m a t e  form e x p r e s s i o n s  f o r  t he  r a t e s  o f  d i f f u s i o n  t r a n s p o r t  unde r  t he  a c -  
t i o n  o f  v e l o c i t y  and p r e s s u r e  p u l s a t i o n s  i n  t w o - d i m e n s i o n a l  t u r b u l e n t  f l ows  w i t h  t r a n s v e r s e  
s h e a r :  

0 0 l De. = Ox-----Z ( < uhe' > ) ~-- Ox-----[- . e ~ 0,1 -~x~- ' (43) 

-- uh " 1 / E l  0,35 @ 0,035 - -  pep Oxk - - 0 - /  - Ox3 E 
(44) 

{ o o [u3e.(1 +:(~))1}. --0.5 ~ [ule(1 +f(R))] + 

Here f (R!) =0.405(1@0.4 t?,2), R=IE-U2OUffOxs. 

The p r o o f  of  adequacy  o f  models  (43) and (44) was c a r r i e d  ou t  f o r  p l a n a r  j e t s  and mix-  
ing  layers [i, 2], for which it is characteristic that the DEp distributions over the thick- 
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ness of a layer with shear differ substantially from each other in magnitude and sign. The 
coefficient values of models (43), (44)~ obtained as a result of numerical optimization, pro- 
vide satisfactory coincidence of DEu + DEp values, measured [i, 2] and calculated by Eqs. 
(43) and (44) (Fig. 4). 

Thus, as a result of the studies performed, a model equation was developed for describ- 
ing E transport, each of whose terms separately agrees satisfactorily with its measured val- 
ues [i, 2]. 

NOTATION 

xi, axes of the Cartesian coordinates (x~, longitudinal direct$on; x2, corresponds to 

the condition dUi dx2 =0; x3, transverse direction); Ui, averaged velocity components; ui, ve- 

locity pulsation components; p, pressure pulsation; Ui, P, instantaneous values of velocity 
and pressure; E, kinetic averaged turbulence energy; g, kinetic turbulence energy dissipa- 
tion rate; E', g', burbulence energy and turbulence velocity pulsations; oij,~ijk, single 
symmetric and antisymmetric tensors; ~T, turbulent viscosity coefficient; ~, ki6ematic mo- 
lecular viscosity coefficient; p, density; V, volume; l, turbulence scale; A~iJ, sixth rank 

tensor; x, x', radii-vectors for the position in space of two points at a distance of r apart; 
R11(xl, x2, x3 + r), coefficient of intercorrelation of longitudinal velocity pulsations; ~, 
dimensionless transverse coordinate; P, averaged pressure. 

LITERATURE CITED 

I. I. Wygnanski and H. E. Fiedler, "The two-dimensional mixing region," J. Fluid Mech., 
42, 327-363 (1970). 

2. G. Kheskestad, "Thermoanemometer measurements in a planar turbulent jet," Prikl. Mekh., 
32, No. 4, 1-17 (1965). 

3. W. C. Reynolds, "Recent advances in the computation of turbulent flows," Adv. Chem. 
Eng., ~, 193-246 (1974). 

4. J. Rotta, "Statistical theory of inhomogeneous turbulence," Z. Phys., B129, 547-572; 
B131, 51-77 (1951). 

5. B. I. Davydov, "Statistical dynamics of an incompressible turbulent fluid," Dokl. Akad. 
Nauk SSSR, 136, No. i, 47-50 (1961). 

6. K. Hanjalic and B. E. Launder, "A Reynolds stress model of turbulence and its applica- 
tion to thin shear flow," J. Fluid Mech., 52, 609-639 (1972). 

7. J. O. Hinze, Turbulence, McGraw-Hill, New York (1975). 
8. M.D. Millionshchikov~ "The theory of homogeneous isotropic turbulence," Dokl. Akad. Nauk 

SSSR, 32, 615-619 (1941). 
9. D. E. Cormack, L. G. Leal, and J. H. Seinfeld, "An evaluation of mean Reynolds stress 

turbulence models: the triple correlationvelocity," Trans. ASME, i00, 47-54 (1978). 
I0. J. Conte-Bello, Turbulent Flow in a Channel with Parallel Walls [Russian translation], 

Mir, Moscow (1968). 
ii. A. P. Netjukhajlo, I. A. Sherenkov, and O. L. Tertichny, "The model of turbulent ex- 

change in stratified flows," Proc. XVIII Congress IAHR, Italy, Vol~ 3, 109-116 (1979). 

1090 


